

Triaxial piezo-electric accelerometer

2pC/g nom./axis • 8gm wt. 200°C max. temp.

A/32

10k

CONVERSION MODE	KONIC
Charge sensitivity pC/g (X, Y, Z)	1.3/2.7
Charge sens. % deviation re nom.	±5
Capacitance pF	220/320
Resonant frequency kHz	X (30) ; Y (30) ; Z (35)
Cross axis error % max	5
Temperature range °C	-50/+200
Charge sensitivity	-5% @ -50°C
deviation re 20°C	+10% @ +200°C
Pyro-electric output, g/°C	0.2
Pyro-electric corner freq. Hz	0.001
Base strain sens. g/μ strain	< 0.002
Max continuous accn. g sine	2000
Insert/block insul. resce, M ohms	1000 @ à 100V, 20°C
Materials	inserts s/steel 303 S31,
	mtg. block al. alloy
Mounting	3 X 2.5mm ø through holes
Weight gm	8
Connector	L5
Case seal	transducer inserts welded,
	bonded into hard anodised al.block

S ub-miniature triaxial vibration transducer comprising three KONIC A/25/E inserts bonded orthogonally into a hard anodised aluminium housing.

The inserts are electrically insulated, individually and from the housing, thus eliminating ground loop interference.

The additional mechanical isolation implicit in the construction provides also near elimination of strain induced error.

The spatial response of a structure to dynamic forcing may lead to erroneous single axis vibration or shock measurement, due to the inherent directional property of the transducer.

In cases where this is deemed to be a problem, an orthogonal three axis measurement, allowing computation of absolute value and direction offers a solution.

The d33 component suppression property of the KONIC design, resulting in minimisation of cross axis error, is particularly advantageous for three axis measurement integrity.

options

wideband temperature calibration