

 $G \ eneral purpose \ KONIC \ vibration \ transducers \\ c/w \ integral \ two \ wire \ charge/voltage \\ converter \ (QVC). \ QVCs \ are \ energised \ from \ a \\ current \ source, \ generate \ a \ low \ impedance, \ noise \\ immune \ voltage \ proportional \ to \ input \ charge, \\ hence \ acceleration, \ and \ need \ minimal \\ interfacing.$

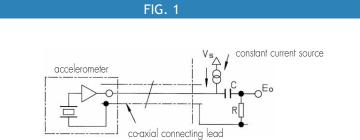
Fig.1 shows basic supply connection, signal extraction. This type of QVC interface is available in several commercial vibration spectrum analysers as well as in our own VV/04 or V4/04 signal conditioner, which provide in addition normalising, scaling, and fault detection features.

Associated with the QVC is a 5V peak out limit. This imposes an overriding, sensitivity dependent peak acceleration constraint on the A/120/V of 50/500g, and above which the QVC saturates.

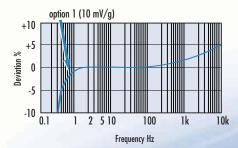
We suggest that applications are evaluated sufficient to determine the requisite A/120/V sensitivity.

options

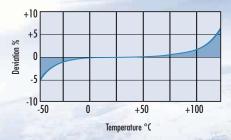
- case and base isolated versions available
- extended low frequency response,
 0.5x std. LF response, option/L
- > non magnetic (/N) ; A/120/VT/N and A/120/V/N :


13gm, A/120/VTC/N : 20gm

- > wideband temperature calibration -50/+125°C
- > A/120/VTC, fitted hermetic TNC connector, can be supplied proof pressure tested with/without cable.
- Teds capable digital memory and communication, compliant with IEEE P1451.4 : A/120/VM, A/120/VTM and A/120/VTCM


Piezo-tronic voltage source accelerometer

A/120/V A/120/VT A/120/VTC A/120/VI A/120/VTI


standard output 10 ; 31.6 ; 100mV/g • 18gm wt. 125°C max. temp. • Teds option

FREQUENCY RESPONSE

TEMPERATURE RESPONSE

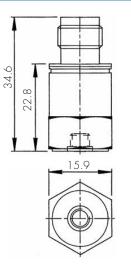
The transducer signal cable constitutes a capacitive load to the QIC.

The quadrature drive current available, I_C , equals the source current Is less the QVC minimum operating current of around 1.5mA,

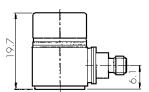
I_{OVC},thus :

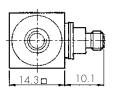
 $I_C = \sqrt{I_S^2 - I_{QVC}^2}$, or 3.7mA from a 4mA source, capable of driving a 10nF cable a 5V pk., 12kHz.

The A/120/V bias voltage is temperature dependent and increases from 9V @ 20°C to 11/12V @ 125°C, thus reducing pro-rata the positive output voltage for supply voltages Vs below 18V.

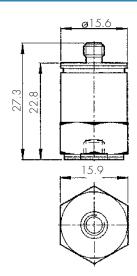


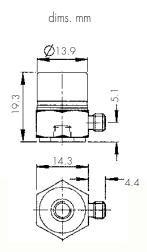
Piezo-tronic voltage source accelerometer

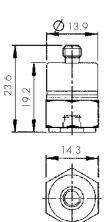

A/120/V A/120/VT A/120/VTC A/120/VI A/120/VTI


standard output 10 ; 31.6 ; 100mV/g • 18gm wt. 125°C max. temp. • Teds option

A/120/VTC




A/120/VI



A/120/VTI

A/120/V

A/120/VT

CONVERSION MODE	KONIC/2 WIRE QVC
sensitivity option	→ 1 2 3
Voltage sensitivity, ±5% @ 20°C mV/g	10 31.6 100
Resonant frequency kHz	28
Cross axis error % max	5
Temperature range °C	-50 / +125
Voltage sens. deviation re 20°C	-5% @ -50°C + 5% @ +125°C
Pyro-electric output, g/°C	0.2
Pyro-electric corner freq. Hz	0.002
Base strain sens. g/μ strain	0.01
Max continuous accn. g sine	1000
Supply voltage V	15/35
Supply current mA	2/15
Bias voltage V (20°C)	8.5/9.5
Settling time to 90% final val. secs.	5 5 5
Noise level, equiv. mg	3 2 1
L.F. corner frequency, Hz	0.2 0.7 2
L.F. corner frequency, Hz /L option	0.1 0.4 1
Saturation limit, equiv. g	450/500 140/155 45/50
Output resistance, ohms (500Hz)	30 50 100
Case material	s/steel 303 S31
Mounting	base tapped 10/32 UNF 4mm deep
Weight gm	18, 29 (/VTC)
Connector	Microdot skt.10/32 UNF thd. (A/120/V, /V
	TNC skt (A/120/VTC)
	Isolated Microdot 10/32 UNF (A/120/VI, /VI
Case seal	welded, hermetic connector (TNC)